Use of Patient-Centric Electronic Health Record and Big Data Analytics to Reduce Hospital Readmission

Fleming Y. M. Lure*# and Wei Qian#

* MS Technologies Corp., Rockville, MD
University of Texas, El Paso, TX
Outlines

• Problem and Solution
• Big Data Analytics Prediction
• Patient Tracking System
 – Patient-Centric Electronic Health Record (PC-EHR)
• Clinical Results
• Summary
Problem

- 30-day hospital readmission:
 - reduce the quality of patients’ healthcare.
 - cost the nation over $26 billion every year, just for Medicare Patients

Solution

- Four (4)-week community-based care transition service
 - Coleman care transition model
 - Over 218 CMS-designated accountable care organizations (ACO) and 105 CMS-funded community-based organizations (CBO)

References:

- http://innovation.cms.gov/initiatives/CCTP/
Success Factors Enabled by Technologies

1. Identification of high risk patients
 – prior to enrollment
 – Specific for home visit
2. Timely appropriate services
3. Workflow efficiency
 – Patient centric
 – Service to as many patients as possible
4. Self sustainable

- "Hospitals and Care Systems of the Future," American Hospital Association; September 2011.
Middle Chesapeake Region
- 60x60 square miles area
- 10 hospitals
 - 3 providers / hospital
- Each year
 - 40,000 Medicare Patients
 - > 150,000 inpatient Pts

- Initial Site: Prince George Hospital Center, Cheverly, Maryland

Health Connect Care Transition Program by Medical Mall Health Services, Washington, DC
Data Source

• Hospital daily Admission/Discharge/Transfer (ADT) Data
 – sent at 4 am every weekday
 – Average ~1,100 patients/month (48 patients/day)

• EHR data
 – Different conditions for each patients
 – Interview notes (SOAP Notes)

• Exclusion:
 • Chemo/radiation; pregnant/prenatal; new born
 • Dialysis, mental health

• 3 months of ADT: Used as training set for machine learning of big data analytics

• Gold Standard: days from discharging to readmission
 – Hospital QA provided historical data
Characteristics of Data

• Structured Data (CPT/ICD 9 (10) Code):
 – Well-documented conditions:
 • CMS-recognized Congestive heart failure (CHF), Pneumonia (PN), acute myocardial infarction (AMI) Conditions and Better Outcomes by Optimizing Safe Transitions (BOOST) criteria to cause 30-day hospital readmission
 – Others somewhat documented conditions: cardiovascular disease (CVD), COPD, sepsis, and co-morbidities.

• Unstructured Data:
 – Freehand: Healthcare provider’s subjective and objective assessment, availability, impression, and plan (SOAP) Note
 – Mental illness and chronic physical conditions

• Incomplete data:
 • Availability of Discharged Medicine
 • Missed interviews

– Ingestion of data: daily

Big Data Challenge:
Volume, Velocity, Variety, Veracity
Architecture of Analytics Platform
- Based on Characteristics of Data -

- Traditional Well-know diagnosis (AMI, CHF, COPD, etc.)
- EHR Fields: ICD, encountered fields (Structured)
- Hospital Fields: (Structured)
- SOAP Notes impression; interview (unstructured)
- Take-home medication,
- Discharged interview (incomplete data)

Ingestion
Query & Retrieval

Knowledge Based-Multi-Layer Perception

Feature Selection & Support Vector Machine (SVM)

Natural Language Processing

Feature Selection & Statistical Analysis

Decision Fusion/Dash board

Red Flag (of high-risk patients) Prior to and during enrollments
Knowledge-Based Multi-Layer Perception

- Well-Known Conditions (pre-trained data)
 - Clinical Decision Support System (Decision Tree)
 - Nun-Uniform Binary Splitting
 - Binary Decision Diagram
 - Karnaugh Map
 - Multi-layer Perception (In-Memory Processing)

- Daily ADT Data
- Error Back-Propagation Training
- New Weights

Initial Weights
Natural Language Processing

Unstructured Notes → Co-occurrence Matrix → Sense Classifier → SVM Classifier

Named Entity Recognition for diseases & symptoms → Co-referenced Resolution → Word sense disambiguation

Medical Dictionary for Health Care Consumers, Coleman’s Terms → Weekly Consensus

Data Base (SQL & NoSQL) → Data Warehouse (NLP Library) → Data Warehouse
Receiver Operating Characteristic (ROC) Analysis of Prediction

- Development set: three months of de-identified ADT data from PGHC
 - Gold Standard: Hospital Historical QA Data
- Training/validation set: 201 positive and 2,023 negative cases
 - 50-50 split stratified randomization
 - Jack-knife re-randomization
- ROC Analysis on Validation Set
- End-point of Clinical Evaluation: Reduction in 30-day hospital readmission
ActiPatientCare
Manage Workflow
(Patients, Services, Providers)
Raise Red Flags
Distribution of Conditions for Selected Patients
(Oct – Nov 2012)

October
- HIV 0.00%
- Renal Failure 4.97%
- Sickle Cell 2.48%
- Diabetes 13.04%
- ACS/CVA 26.09%
- CAD 11.80%
- CHF 21.74%
- COPD 9.94%
- Pneumonia 9.94%

November
- HIV 0.71%
- Renal Failure 1.42%
- Diabetes 7.80%
- Sickle Cell 2.84%
- ACS/CVA 29.79%
- CAD 17.02%
- CHF 20.57%
- COPD 12.06%
- Pneumonia 7.80%

Big Data Analytics Selects More Than Top Three Conditions (CHF, AMI, PN)
Patients Selected for Services

- 30%-45% Patients selected during discharging for the care transition service
- Using same resources, more patients are served using tracking PC-EHR than without PC-EHR
 - No Tracking PC-EHR: 106.25 / month
 - With Tracking PC-EHR: 340.14 / month
Patients Served in Health Connect in PGHC, Oct - Nov, 2012

<table>
<thead>
<tr>
<th>No. of Patients at Different Flows</th>
<th>October</th>
<th>November</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Patients Enrolled to Health Connect</td>
<td>387</td>
<td>339</td>
<td>726</td>
</tr>
<tr>
<td>Patients Referred to PCP</td>
<td>381</td>
<td>332</td>
<td>713</td>
</tr>
<tr>
<td>Patients Scheduled for Home Visit by CHW</td>
<td>89</td>
<td>168</td>
<td>257</td>
</tr>
</tbody>
</table>

Patients Served in Health Connect in PGHC, Oct - Nov, 2012

<table>
<thead>
<tr>
<th>No. of Patients at Different Flows</th>
<th>October</th>
<th>November</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Patients Enrolled to Health Connect (Percentage)</td>
<td>98.4%</td>
<td>97.9%</td>
<td>98.2%</td>
</tr>
<tr>
<td>Patients Referred to PCP (Percentage)</td>
<td>23.0%</td>
<td>49.6%</td>
<td>35.4%</td>
</tr>
</tbody>
</table>
Reduction of 30-day Re-admission (2011 vs. 2012)

- Using same resources, more reduction achieved using big data + tracking PC-EHR than traditional EHR
 - 37.1% Reduction: with PC-EHR and Prediction (254 to 160)
 - 24.81% Reduction: Without PC-EHR and Prediction (2/12-5/12 vs. 2/13 – 5/13)

Total Reduction: 37.1% (254 to 160)
Summary

• Analytics was developed to address not only the big volume but also the big velocity, variety, and veracity

• Combination of patient-tracking, EHR, and big data analytics can reduce ‘more’ hospital readmission

• Future Works
 – Need a fully integrated data collection (EHR) and tracking system
 – More data is needed to improve the analytics model
 – Use of standard tools
 – More clinical evaluation
THANK YOU!

Acknowledgement

• ActiPatientCare Patient Tracking System: MS Technologies, Rockville, MD
• University of Texas, El Paso, Texas
• City of Seat Pleasant, Prince’s George County, Maryland
• Prince’s George Hospital Center, Cheverly, MD
• Dimensions Healthcare System, Prince’s George County, Maryland
• Medical Mall Health Services, Washington, DC
• Partially funded by Center for Medicare and Medicaid Services (CMS) Innovation Center, ACO SSP/AP Program

Contact: fleming.lure@mstechnologies.com